
The webAppOS Architecture

Sergejs Kozlovičs

Research #1.1.1.2/VIAA/1/16/214 “Model-Based Web Application Infrastructure with Cloud
Technology Support”, project agreement #1.1.1.2/16/I/001.

This document is marked as Deliverable 2.1 “The description of the architecture of the proposed
infrastructure” within Working Package 2 “Defining the specification of the infrastructure”.

Abstract

The purpose of this document is to describe the overall architecture of webAppOS as well
as design choices.

This document references the API specifications (Deliverable 2.2) and other
webAppOS documentation (Deliverable 3.2), where further details are provided.

The latest version of this document can be obtained at http://webappos.org/theory.

Email address: sergejs.kozlovics@lumii.lv (Sergejs Kozlovičs)

http://webappos.org/theory

CONTENTS 2

Contents

1 Introduction 4

2 The Web Computer Architecture 5

3 Web Memory: Storing and Accessing Data 6

3.1 The Main Design Choice . 6

3.2 Accessing Data in Web Memory . 7

3.2.1 Accessing Web Memory at the Server Side. 9

3.2.2 Accessing Web Memory at the Client Side. 9

3.3 Multiple Web Memory Instances on a Single Server 9

3.4 Collaboration . 11

3.5 Implementing Web Memory . 11

3.6 Code References . 12

4 Web Calls: Launching Code 12

4.1 Instruction Sets . 12

4.2 Web Calls . 13

4.3 Web Calls Adapters . 13

5 Web Processors 15

5.1 The Client-Side and Server-Side Bridges 15

5.2 Implementing Client-Side Web Processors 16

5.3 Implementing Server-Side Web Processors 16

5.4 Implementing Remote Web Processors . 17

5.5 Web Processor Bus Service . 17

6 Web I/O Devices 17

6.1 Scopes . 18

6.1.1 Scopes API . 18

6.1.2 webAppOS Scopes Driver . 19

6.2 Predefined Web I/O Devices . 19

6.2.1 webAppOS Registry . 19

6.2.2 webAppOS Home File System . 20

6.2.3 E-mail Sender . 21

6.2.4 Desktop . 21

6.3 Mounting Remote File Systems and Registries 21

6.3.1 Remote (Cloud) File System Drivers 21

6.3.2 Remote (Cloud) Registry Drivers 22

CONTENTS 3

7 webAppOS Applications and Services 22
7.1 webAppOS Web Applications . 22
7.2 webAppOS Engines . 23
7.3 webAppOS services . 23
7.4 Serverfull and Serverless Modes . 24

8 Overall webAppOS Architecture 24
8.1 Main Components . 25
8.2 Similarity with the Typical Motherboard Layout 26
8.3 Developers’ Experience . 27
8.4 End-Users’ Experience . 27
8.5 Administrators’ Experience and Scaling . 27

References 28

4

1. Introduction

When Ada Lovelace wrote programs for the Babbage engine, there was nothing more
than a single computer (engine) operated by a single user and being able to run one
program at a time. Later, when Alan Turing and Emil Post described the Post-Turing
machine, the same way of thinking remained: a single user operated a single computer
being able to execute a single program at a time. We call such thinking the three-singles
assumption.

Today we have multi-core processors and advanced operating systems with support for
multitasking, multiple user accounts, and networking. Nevertheless, programmers today
still tend to preserve the same level of thinking as in the three-singles assumption, leaving
other technical tasks to the operating system, OS, which deals with multitasking, user
management, and concurrent access to the computer resources (CPU, memory, and I/O
devices).

The urge to preserve the 3-singles assumption in programmers’ mindset is not illog-
ical. Recent neuroscience research reveals that the human brain is not capable of real
multitasking; it switches between tasks instead.

Modern operating systems are intended to be executed on a single computer, where
all main resources (CPU, memory, and I/O devices) are physically attached. This design
can be traced back to the architectures of the first general-purpose electronic computers.
The most known architectures are the von Neumann architecture (also called Princeton
architecture) and the Harvard architecture [23]. The main distinction between them is
that in the von Neumann architecture, instructions and data are stored in the same mem-
ory, while the Harvard architecture uses 2 types of memory for that. The von Neumann
architecture is easier to implement and is more suitable for code loaders and just-in-time
compilers. The Harvard architecture, in its turn, allows instructions and data to be pro-
cessed in parallel and even to be stored using different physical representations. While the
majority of today’s computers, in general, follow the von Neumann model, modern CPUs
also implement some aspects of the Harvard architecture in their cache for optimized
performance.

Both architectures describe a single computer. That is not surprising since both
architectures appeared before Vannevar Bush foreshadowed the modern Internet in his
classical paper [24]. Introduction of the network required no changes in the architecture
since the network could be represented by I/O devices (such as network cards or antennas)
attached to the communication endpoints. However, writing network programs required
a new way of thinking: the programmers had to think about multiple computers (such
as the client and the server), where the resources are physically separated. Operating
systems could only aid with providing seamless access to some remote I/O devices (such
as network printers, remote displays, or remote file systems), but failed to provide the
same indirection level to remote processors and memory. Furthermore, web applications
had to address additional network-specific issues such as managing limited server resources
among multiple users, network latency, connectivity, security, and privacy.

webAppOS (abbreviation from Web Application Operating System) is an infrastructure
that allows the developers to create web applications while remaining within the 3-singles
assumption. webAppOS factors our most network-related technical issues and provides an
illusion of a single computer with directly attached CPUs, memory, and I/O devices. We
coin the term web computer to denote this illusion. The web computer is an abstraction
since it exists only in the mind of the developer. The webAppOS API provides a feeling
that the underlying web computer is real. Still, webAppOS must rely on existing web

5

technologies for delivering web applications to and running them at real devices.
In Sections 2–6, the architecture and the main internal components of the web com-

puter are described. Section 7 provides more detail on how to develop webAppOS appli-
cations and services. Section 8 provides a summary of the webAppOS architecture.

2. The Web Computer Architecture

Like in classical computer architecture, the hypothetical web computer has 3 main
types of components: web memory, web processors, and web I/O devices. We use the
traditional client-server architecture as a starting point to explain these 3 terms.

Traditionally, the web server usually runs some HTTP server software (e.g., Apache
web server) and is able to execute some server-side application code (e.g., PHP code or
Java servlets). There is also the client-side web browser being able to display HTML pages
and run JavaScript1 or WebAssembly code. Traditionally, the communication between the
client and the server is performed via stateless HTTP requests/responses using HTML,
XML, or JSON data formats. Modern web applications can also use web sockets for
lightweight bi-directional communication.

To provide an illusion of the common memory space for data (not for the code!), the
network communication has to be factored out. Two steps are required for that:

• defining a standard data format for both the server and the client,

• synchronizing these data transparently and automatically.

We call such common data space web memory.
An essential property of web memory is that it stores data only, the code is stored

separately. Thus, the web computer implements the Harvard architecture. The arguments
in favor of such design choice are:

• Security considerations. Should web memory store instructions along with data, the
client would be able to inject malicious code that could be eventually executed at
the server side.2

• Code concealment. Due to license restrictions or copyright-related concerns, it can
happen that specific proprietary server-side code may not be disclosed. On the
other hand, the client can have some proprietary client-side code (e.g., encryption
algorithms) that should not be disclosed to the server.3

• Different environments. There are fundamental distinctions between the server-side
and client-side environments and sets of technologies (e.g., PHP/Java/Python at
the server-side and JavaScript/WebAssembly at the client-side). On the contrary,
storing code and data in the same place would require unification of code execution

1We use the name “JavaScript” here, however, the language standard is called ECMAScript [25].
2It is possible that in the future, web memory could allow instructions to be stored in the data space,

but then those instructions must be executed in a controlled environment. That would resemble how web
browsers restrict client-side JavaScript code from accessing foreign iframes as well as the local file system
but implemented at the server-side.

3If such code needs to be shared with the server via the data space, it has to be obfuscated first, e.g.,
using of homomorphic encryption [26].

6

environments at both ends.4 Besides, by keeping the code separate from data, we can
rely on existing classical techniques for delivering the code between the server and
the client (e.g., the HTML script tag for delivering JavaScript, or some FTP/NFS
directory for delivering executable files in virtually any format).

• Web memory is a precious resource. Since multiple users can connect to the server
simultaneously, server RAM and other resources used to implement web memory
should not be wasted.

Web-processors are server-side and client-side software (not hardware!) units being able
to launch different types of code written in traditional programming languages. For
instance, there can be a web processor running Java VM at the server side and the web
processor running JavaScript interpreter in the browser window at the client side. There
is no bijection between web processors and physical processors (cores). For instance,
one physical processor at the server side can be used to run 2 web processors: the PHP
interpreter and the Java Virtual Machine (JVM). On the other hand, the same JVM web
processor can launch multiple threads, which could be executed within multiple physical
processors or cores.

Sometimes data have to be sent to/received from external data stores such as a server-
side database or cloud storage. We use the input/output device metaphor to denote such
external data sources and receivers (we call them web I/O devices). Specific graphical
presentations within the browser window (e.g., the web desktop) and client-side devices
(such as printers) are also considered web I/O devices by webAppOS.

Figure 1 provides a summary on the web computer architecture by depicting its main
components.

The following sections provide a detailed, in-depth explanation for all the main com-
ponents of the web computer.

3. Web Memory: Storing and Accessing Data

3.1. The Main Design Choice

The main design choice regarding storing data in web memory is: data are represented
as a MOF-like model, not as an array of bytes. MOF (Meta-Object Facility) is an OMG
standard for describing models [27]. A model, in essence, is a graph of objects and links
conforming to some specification (language) called a metamodel. Metamodels, in their
turn, correspond to some universal meta-metamodel, which can describe itself. Since
various technologies5 converged to the same principles as used within MOF-like models,
we use the universal model concept to represent the content of web memory.

The arguments in favor of such second design choice are:

• Models and metamodels are easy formalized. MOF and ECore are the most known
modeling standards based on the same principles, but using slightly different meta-
metamodels. Since models must conform to some metamodel, which must conform
to the chosen meta-metamodel, it is easy to perform memory consistency checks and

4Node.js tries to provide the same environment for both the client and the server, but this imposes
restrictions to the programming language (JavaScript only).

5These are technologies using 3 meta levels, e.g., object-oriented programming languages, XML,
databases, ontology languages, etc. J. Bézivin and I. Kurtev used to call them technical spaces [28, 29].

3.2 Accessing Data in Web Memory 7

Server Client

 Web services,
 Cloud services

Code
Code

I/O Devices

Web Desktop,
Printer

...

DB,
File system

...

PHP Browser window
(JavaScript,

WebAssembly)
Java

Code

Web Memory

Figure 1: The web computer architecture: the first approximation. Processor icons denote web processors.

provide additional functionality such as granular undo/redo mechanism for objects-
based web memory [30].

• The similarity to OOP. Programmers are accustomed to object-oriented program-
ming (OOP). Web memory objects can be mapped the corresponding structures
of the chosen OOP-style language (including JavaScript), thus, by generating spe-
cific OOP wrappers, developers can use web memory objects as if they were native
objects.

• Easier synchronization. The graph-like structure is more suitable for synchroniza-
tion via the network: OOP-style memory objects can be created on different end-
points independently and then be merged. In contrast, array-based web memory
would require a round-trip delay and server-side management for each memory block
allocation to avoid collisions.

• The same approach is used in Java. In Java, memory is also a graph of objects
conforming to the Java specification. That allows the Java Virtual Machine to
control memory management (e.g., to implement the automatic garbage collector)
and provide the reflection mechanism.

3.2. Accessing Data in Web Memory

Figure 2 depicts various ways of how data stored in web memory can be accessed from
code. Figure 2 expands “Code↔Web Memory” arrows from Figure 1.

The main API to access web memory is RAAPI (Repository Access API), borrowed

3.2 Accessing Data in Web Memory 8

Server Client

JavaScript code

Java code

Lua
code

Web Memory

TDA Kernel (RAAPI) JavaScript objects
(tda.model)

C++/DLL
code

lQuery
library

Generated
Java

classes

TDA Kernel native library
(RAAPI)

Some
other
code

TDA Kernel
.NET wrapper

(RAAPI)

.NET
code

Figure 2: Accessing web memory from code.

from the Transformation-Driven Architecture, TDA.6 The reasons for choosing RAAPI
are:

• It is compatible with virtually any model storage. In particular, there is a RAAPI
wrapper for ECore [33].

• It is a low-level API. RAAPI can be viewed as an assembler for creating and travers-
ing models; thus, RAAPI is able to access model storage efficiently. On the contrary,
high-level APIs (such as Epsilon Model Connectivity Layer or ATL Model Handler
Abstraction Layer), are not so efficient (e.g., linked objects can only be set as a
list, even when we need to include/exclude just one object). Besides, they conceal
internal data structures too much.

• RAAPI supports multiple ontological meta-levels, while most operations reside in
two meta-levels. That is in accordance with Šostaks’ conjecture [34]:

It is difficult for a human to think at more than two meta-levels at a time.
Still, it is fairly easy for a human to focus on any two adjacent meta-levels.

Besides RAAPI, we also borrow the TDA Kernel component, which implements RAAPI.
TDA Kernel is able to open different model repositories via different repository adapters.
We extended TDA Kernel with additional functionality such as the ability to synchronize
RAAPI actions. TDA Kernel is written in Java, but it comes with native wrapper for
Linux, Windows, and MacOS as well as a .NET wrapper.

An important feature of TDA Kernel is the ability to call external code when links
of certain kinds are created. TDA Kernel defines 3 special classes for that: TDAKer-
nel::Event, TDAKernel::Command, and TDAKernel::Submitter. The latter is a singleton

6We proposed RAAPI in 2013 by combining the best from existing repository APIs. RAAPI can be
mapped to virtually any model repository. The actual version can be found at http://webappos.org/

dev/raapi/. The Transformation-Driven Architecture, TDA, is a model-driven approach for building
desktop tools. We proposed it in 2008 [31]. In 2013 we proposed a more mature version 2 of TDA [32].

http://webappos.org/dev/raapi/
http://webappos.org/dev/raapi/

3.3 Multiple Web Memory Instances on a Single Server 9

object, to which events and commands can be linked. Particular event and command types
are descendants of TDAKernel::Event and TDAKernel::Command. When a command or
an event object is linked to the singleton submitter object, TDA Kernel passes the control
to the event/command hook, which calls the corresponding external code and passes the
event or command object to it. The main distinction between events and commands is
as follows: each command of the same type will call the same code, but events can cause
different code to be executed depending on registered event listeners.7 The TDA even-
t/command mechanism allows model transformations to call external code by using only
manipulations with the model; thus, the calls become environment-agnostic. webAppOS
will support TDA calls as one of the ways to call code (discussed in Section 4.2).

3.2.1. Accessing Web Memory at the Server Side.

One option to access web memory at the server-side is via RAAPI by using either
Java-based TDA Kernel or some of its wrappers (native or .NET). However, this should
be considered low-level memory access, since RAAPI covers only primitive operations on
models.

Another option is as follows. Given a metamodel that describes the structure of web
memory, we can generate Java, C++, or other programming language classes that map
model classes to the corresponding language constructs. That could allow the program-
mers to access all objects in web memory as if they were created natively. However, for
the majority of languages, we cannot modify classes dynamically, thus, this trick works
only with a static metamodel, where classes are fixes, and only their instances change.

One more option is to develop higher-level languages providing more flexible access to
the model. For instance, the lQuery library is a RAAPI wrapper that provides xpath-style
language for accessing the model from the Lua programming language [35].

3.2.2. Accessing Web Memory at the Client Side.

In most cases, synchronized web memory at the client side will be accessed from
JavaScript code.8 Since JavaScript is an interpreted language, we can dynamically (during
synchronization) create JavaScript object prototypes that correspond to classes in the
model. Then, for each object in the model, we create a JavaScript wrapper object. Thus,
programmers can have the feeling of working with native JavaScript objects, while all
changes are being transparently synchronized with the server. For client-side JavaScript
code, no RAAPI is required at the client side.

JavaScript wrapper objects are accessible via the tda.model object after including the
webappos.js script [1].

3.3. Multiple Web Memory Instances on a Single Server

Since there usually are multiple connections to the server, webAppOS should isolate
their web memory. Each user can work with multiple web applications at the same time.
In some instances, the user can work with the same web application in different contexts
(e.g., editing different documents). We use the term project to denote each such context.
We use the term slot to denote a web memory instance used by a particular project.

7Event listeners are usually registered somewhere in the context of the event object, e.g., in the
on<EventName> attribute of some object linked to the event. TDA Kernel is able to collect all such
event listeners for the given event.

8API for accessing web memory from WebAssembly code is subject to further work.

3.3 Multiple Web Memory Instances on a Single Server 10

Sync socket 5

Sync socket 4

Sync socket 1

Sync socket 2

Sync socket 3

other synchronizers: 1, 2

other synchronizers: none

other synchronizers: none

other synchronizers: 2, 3

other synchronizers: 1, 3

Java web processor

MRAM

slot1 (sync: 1,2,3)

slot2 (sync: 4)

...

slot1000 (sync: 5)

Lua/lQuery web processor

Java web processor

Web Processor/
Web Memory

Bus Web Socket Bus

Figure 3: MRAM slots and corresponding buses.

We use the RAM9 homophone MRAM 10 to denote the server-side manager for all web
memory slots.

MRAM slots are located at the server. Each MRAM slot can be accessed either from
the server side (by server-side code) or from the client side (by client-side code), see Figure
3.

MRAM slots must be independent on each other, since when web memory in one slot
is invalidated (e.g., due to a code exception during server-side code execution or due to a
client-side connection lost), other slots must remain valid. The invalidated memory slot
can be restored later from the last saved state.

To keep MRAM slots safe from potential server-side exceptions, webAppOS launches
server-side web processors as separate OS processes. Thus, if some web processor process
terminates unexpectedly (e.g., due to an exception), we can safely invalidate the corre-
sponding memory slot and re-launch the web processor for further tasks. The commu-
nication channel between web processors and MRAM slots is called Web Processor/Web
Memory Bus [2].11

To be able to access web memory from the client side, a synchronizer, which syncs the
content of the web memory slot with the client browser, is attached to the TDA Kernel of
that slot. The synchronization channel between the server and the clients is called Web
Socket Bus [3].

9Random Access Memory, an abbreviation used to denote memory in traditional computers.
10Model Repositories as Memory. It is implemented as a pool of model repositories, as explained in

Section 3.5.
11We use the bus metaphor to denote a communication channel between different OS processes or

between different network nodes.

3.4 Collaboration 11

3.4. Collaboration

If multiple users are collaborating on the same project, the same MRAM slot is syn-
chronized via multiple synchronizers.12 In the case of multiple synchronizers, the changes
coming from user i are synced between all users except i.13 The changes coming from
server-side web processors are synced between all users connected to the same slot. How-
ever, this only ensures the consistent state of web memory, not graphical presentations,
which have to be updated by other means.

3.5. Implementing Web Memory

Although web memory could be implemented in a (graph) database, the following
considerations lead us to use a model repository as a more efficient solution:

• There is a need for fast web memory synchronization, both initial and incremental.
Traditional string-based serialization techniques are usually slow.

• Server-side and client-side should be able to alter web memory independently, with-
out a round-trip delay (however, their changes must be eventually merged into a
consistent state).

• Web memory has to be optimized for a large number of primitive operations used to
navigate through the model. In contrast, databases are usually invoked for executing
infrequent, but compound queries.

• There is no need for ACID14 properties since web memory acts as RAM analog.

• Programmers should take care of memory consistency (like in traditional single-PC
applications).

AR is a multi-level model repository that was developed with the goal to provide web
memory to webAppOS [36, 37]. Each MRAM slot is backed by an AR instance. AR has
the following features:

• AR implements RAAPI and, thus, can be accessed via TDA Kernel.15

• AR uses the efficient encoding of models. The encoding is optimized for frequent
primitive operations.

• AR is designed for efficient synchronization via web sockets. The encoding of models
suitable for transferring via web sockets “as is” (in particular, it uses IEEE doubles
for numbers, since it is the only numeric datatype available in JavaScript). Changes
are sent asynchronously; thus, the primary process continues without any delay.
Furthermore, changes are sent via web sockets in bulk. Besides, the repository is
able to merge independent server-side and client-side changes. The following trick

12Notice that this ensures only memory state synchronization. Synchronizing graphical representa-
tions, such as diagrams, depends on the logic of web applications, thus, lies behind webAppOS features.
Nevertheless, webAppOS will make it easier to create fully collaborative web applications by offering
certain helper functionality.

13We use efficient data structures for lists of synchronizers; thus, for n users, the memory occupied by
these lists is O(n).

14Atomicity. Consistency. Isolation. Durability.
15AR is implemented as a repository adapter for TDA Kernel.

3.6 Code References 12

is used to avoid collisions: when new repository elements are created, the server
assigns even references for them, but the client assigns odd16.

• AR is able to utilize memory-mapped files, managed by the OS. This allows AR
to serve 10,000 and more web memory slots used by concurrent users, even when
all the slots do not fit into server physical RAM. Still, due to possible paging and
limited processor cache, web memory should be considered a precious resource and
limited to a few megabytes per slot in popular server configurations.17 Since each
AR instance has a unique identifier for memory-mapped files, when one MRAM slot
corresponding to the given AR instance is invalidated, other MRAM slots remain
valid. During the invalidation process, AR deletes memory-mapped files; thus, when
the repository is being accessed next time, it is re-created from the last saved state.

3.6. Code References

While web memory does not store code, it is allowed to store code references. A code
reference is just a human-readable string identifier, which maps to a particular server-side
or client-side code (e.g., function). Since the client can modify code references within
web memory, webAppOS will execute only code pointed by code references registered at
the server side. That is required to avoid code injection-based attacks. The referenced
server-side code should have been validated that it will not harm the server.

4. Web Calls: Launching Code

Since the code of a web application can be developed for different execution environ-
ment, we define the term “instruction set” in the context of the web computer architecture
first. Then we explain how that code is called.

4.1. Instruction Sets

The code can be located either at the server side or at the client side. The server and
the client usually have different environments and technology stacks. We use the term
instruction set to denote each such environment. An instruction set can be represented
by (but not limited to) the following environment types:

• a particular OS regardless of the processor architecture, e.g., “Ubuntu 18.04”, mean-
ing that the Ubuntu Linux v18.04 is installed and certain packages are available,
however, the processor architecture may vary (e.g., Intel or ARM);

• a combination of the OS and the physical processor architecture (e.g., “GNU/Linux-
x64” or “Win32”);

• a higher-level technology (e.g., PHP, Java, Python, .NET, JavaScript, WebAssem-
bly, etc.);

• presence of certain software or hardware (e.g., “Printer”).

By including/excluding version number and other requirements, different variations of
instruction sets may appear, leading to the hierarchy of instruction sets. The hierarchy
is based on the “subclass of” relation between instruction sets defined as follows:

16In case there are several servers or clients, we can further split the sets of references modulo 4, 8, etc.
17For example, Microsoft Office 365 limits the size of one document to 5 MiB.

4.2 Web Calls 13

an instruction set J is a subclass of instruction set I, iff code requiring envi-
ronment I can be executed also within environment J.

Example. Assume the “JavaScript” instruction set has two subclasses, “Server-
side JavaScript” and “Client-side JavaScript”. The algorithmic code can require just
“JavaScript”, allowing it to be executed by webAppOS at either side. However, GUI code
must be executed in a web browser, thus, it should require the “Client-side JavaScript”
instruction set. Further subclasses, including JavaScript version numbers, can also be
defined.

Since the code will be executed within web processors, each web processor must sup-
port at least one instruction set. It is up to a web processor to which extent it will support
the hierarchy of instruction sets. Typically, a web processor implementing some particular
instruction set should also support its superclasses (see Section 5).

4.2. Web Calls

When a project is being created or opened by the user, an MRAM slot is allocated,
and the initial code (the initial action) of the corresponding webAppOS web application
is called (the initial action plays the same role as the main function in C/C++ or Java).
Initial action can make calls to other actions (client-side or server-side), which can call
other actions, and so on. Thus, we can consider a webAppOS application as a set of such
actions, which may require different environments (instruction sets) to run. Some of these
actions will be defined by developers of a particular web application, some are provided
by webAppOS out-of-the-box, others will be available as pluggable libraries. We use the
term web call to denote a single invocation of a webAppOS action.

Each action has a name (also used as a webAppOS code reference mentioned in Sec-
tion 3.6), which uniquely identifies the given action. Each action name maps to the
associated information containing the name of the required instruction set, where to find
the corresponding code, how to pass the arguments, as well as some other technical in-
formation. We call all this information web call declaration.

Each invocation consists of the action name and the required arguments. All registered
actions can be called from the server side as well as from the client side. Thus, when
making a web call, the developer does not need to know where and how the code will
be executed.18 Given a web call, webAppOS searches for the corresponding action by its
name. Then, webAppOS finds the appropriate web processor that supports the required
instruction set and forwards the call to that web processor (the web call is serialized and
sent over the network if the appropriate web processor is running on another network
node).

4.3. Web Calls Adapters

Web calls adapters act as an abstraction layer for invoking code within different envi-
ronments (instruction sets). Each web calls adapter implements a uniform server-side or
client-side API (web processors rely on these adapters when processing web calls) [4, 5].
Examples of existing adapters are:

• staticjava - a server-side adapter for calling Java code located in static Java functions
(thus, the adapter just has to load the corresponding Java class, but does not need
to create a class instance for each new call);

18This resembles how traditional operating systems choose the processor for executing the code, where
the developer does not need to think about which processor or core will be used.

4.3 Web Calls Adapters 14

• lua - a server-side adapter for calling Lua 5.1 code;

• clientjs - a client-side adapter for executing JavaScript code.

Additional web calls adapters can be created as well.

Each web call adapter has a name, which corresponds to the instruction set. If the
name contains the substring “client”, it is considered a client-side web call adapter (server-
side, otherwise).

We use the term calling conventions to denote different ways of how arguments can
be passed with a web call. Currently, there are two calling conventions:

• jsoncall - a string or a JSON is passed as an argument; a JSON is always returned.
Internally, when performing a call or when sending JSONs via the network, JSONs
are serialized (stringified). This calling convention is used for actions that do not
require access to web memory as well as for actions that can access web memory, but
where the argument should not be stored in web memory, or it is easier to encode
the argument as JSON.

• tdacall - a web memory object (or its reference) is passed as an argument, nothing
is returned. This calling convention is mostly used to execute actions that access
the model. In particular, tdacall is used for executing TDA commands and han-
dling TDA events. All tdacall actions are executed asynchronously; thus, they are
expected to return nothing. If they need to provide some feedback, they can do
that, for example, by creating and submitting a TDA event, which will be handled
in a similar way.

Each web calls adapter must implement at least one of the calling conventions.

Each web call declaration must specify the calling conventions. Web call declarations
use Java-style modifiers to specify calling conventions and other technical information.
Calling conventions are specified by using either jsoncall (default), or tdacall modifier.
Depending on whether the given web call can access web memory or whether it requires
an authenticated user, additional modifiers are introduced:

• Private and project-related web calls (default, no modifiers needed). Such web calls
require an authenticated user session as well as an MRAM slot, where the web
call can modify data. Such web calls are usually specific to the corresponding web
application.

• Private and static web calls (denoted by the static modifier). Such web calls require
an authenticated user session but do not need an MRAM slot. Such web calls can
implement user-specific actions that are independent on a particular web applica-
tion. Examples of such web calls include uploadFile and set/getUserRegistryValue
[6].

• Public and static web calls (denoted by both public and static modifiers). Such
web calls neither require an authenticated user, nor an MRAM slot. Such web
calls can be accessed by any user. An example of a public and static web call is
getAppPropertiesByFullName, which returns meta-information of the given installed
webAppOS app.

15

A web call may not be public and non-static at the same time.19

Additional independent modifiers are:

• inline - used for fast simple (usually, technical) actions that do not require web
processors for execution; inline actions must use the staticjava web call adapter to
minimize server load; inline calls are executed by the bridge directly, without passing
them to web call adapters. The default behavior (without the inline modifier) is to
pass the web call to some appropriate web processor.

• single - if multiple users are connected to the same MRAM slot, this modifier
instructs webAppOS to invoke the given web call only for one user, who originated
the parent web call (the caller). The default behavior (without the single modifier)
for webAppOS is to synchronize web calls between all users connected to the given
MRAM slot.

All web calls declarations are stored in .webcalls files, which are usually located in the
webAppOS etc directory or the corresponding web application directory (within the
webAppOS apps directory). All such .webcalls files are automatically parsed and reg-
istered at the server side; thus, the corresponding action names (=webAppOS code refer-
ences) are considered legitime by webAppOS [21].

5. Web Processors

Web processors can be located either at the server side or at the client side. Since
the server and the client usually have different environments and technology stacks, it
would be difficult to provide an illusion of a single processor and at the same time to use
all the benefits each environment offers. Thus, the web computer architecture resembles
the multi-processor architecture, where multiple (different) processors share data memory
but have separate arithmetic and logic units (ALUs).

Each web processor must be able to execute the code developed for at least one par-
ticular instruction set. Usually, a web processor is based on a code interpreter or a set
of libraries (e.g., the OS kernel + certain preinstalled libraries). For example, the web
processor implementing the “Python 2.7” instruction set can utilize the Python 2.7 in-
terpreter. The precompiled x86 64 Linux kernel 4.x with POSIX libraries can be viewed
as a web processor for the “Linux 64” instruction set. Similarly, the web browser can
be considered a web processor implementing the “JavaScript 6” and ”WebAssembly 1.0”
instruction sets.

By a convention, a web processor implementing some particular instruction set should
also offer its more generic variations. However, this is not a rule.

5.1. The Client-Side and Server-Side Bridges

The client and the server, each has a module called a bridge, which is responsible
for synchronizing web memory, managing web processors at the given network node, and
processing web calls20. When one side makes a web call that has to be executed at the
other side, both bridges also communicate on how and where to execute code.

19If a web call is not static, then it has an MRAM slot. Each slot must be associated with at least one
connected user. Thus, an authenticated user session is required, and, hence, the web call is not public.

20The server-side bridge is implemented in Java; it provides a web socket server-side endpoint for
clients willing to connect to MRAM slots. The client-side bridge is implemented in JavaScript (located
in webappos.js); web memory synchronization is performed via a WebSocket object.

5.2 Implementing Client-Side Web Processors 16

Each bridge follows the event loop model for processing web calls. The event loop, in
essence, is a FIFO queue processed in a single thread.

The client-side bridge relies on the built-in JavaScript even loop. Each web call is
enqueued via the webappos.webcall function (from webappos.js).

The server-side bridge implements its own event loop model called the queue of web
calls. The component, which implements this queue, is called Web Caller.

One MRAM slot can be associated with at most 1 server-side web processor executing
code on that MRAM slot. Thus, server-side web calls over the same MRAM slot are
executed according to the event loop model. However, since there are multiple parallel
MRAM slots, the queue of web calls is actually a double queue. The outer queue is the
list of MRAM slots, for which there are non-empty queues of submitted web calls. Each
MRAM slot maintains the inner queue of web calls that are waiting to be performed on
that MRAM slot.

The server-side bridge takes out MRAM slots from the outer queue in the FIFO
manner. If the top-most MRAM slot is already busy (i.e., some web processor is executing
code on that slot), the slot is re-enqueued to the end of the queue. Otherwise, the inner
queue of web calls waiting for the current MRAM slot is considered: the first waiting web
call is being de-queued, some appropriate free web processor is found, and the web call
is launched (asynchronously) on that web processor. If there are no free web processors,
the web call remains in the queue, and the current MRAM slot is re-enqueued into the
outer queue as if the MRAM slot was busy.

5.2. Implementing Client-Side Web Processors

Currently, there is only one built-in client-side web processor implemented in
webappos.js. The client-side web processor relies on web calls adapters, which can utilize
various client-side browser technologies, such as JavaScript (preferred), WebAssembly,
ActiveX, Java applets, Flash, etc. JavaScript-based web calls adapters can access web
memory directly via JavaScript wrapper objects (from tda.model), while non-JavaScript
adapters may require additional means to access web memory.

In the future, support for multiple client-side web processors (e.g., via web workers or
standalone executables running at the client side) can be added.

5.3. Implementing Server-Side Web Processors

We propose to implement server-side web processors as separate OS processes. Since
we use memory-mapped files for implementing web memory, web processors will also be
able to access them. However, a web processor (accessing data in web memory intensively)
and the model synchronization module (synchronizing changes with the client) may need
to access the same web memory concurrently. Thus, the underlying model repository AR
implements specific access bits in memory-mapped files to handle concurrent access.

The idea of launching separate OS processes has an important benefit: if the code
being executed within a web processor crashes, the process can be re-launched without
affecting other web processors and web server software. Furthermore, if code freezes
(or takes too long to execute), we can forcefully terminate the web processor and then
relaunch it for executing other code. However, upon web processor termination, we have
to invalidate the corresponding web memory (this resembles an ordinary application crash
when data from RAM are being lost).

Since a single web processor has to implement a certain instruction set such as Java
or Python, it reserves some amount of the server RAM for the underlying libraries (e.g.,

5.4 Implementing Remote Web Processors 17

Java virtual machine can take several hundreds of megabytes). In addition, the number
of web processors that can execute code in parallel is related to the number of physical
processor cores. Thus, obviously, the number of web processors running within the same
server will be quite small. When there are too many requests for executing code, or when
certain web processors require a specific environment, which is incompatible with the
current webAppOS installation (e.g., a web processor requiring a different OS), remote
web processors can be implemented.

5.4. Implementing Remote Web Processors

Remote web processors are like server-side web processors running on additional
servers, perhaps, in different environments. The code (actions for web calls) can be
shared between all such web processors via a shared or replicated directory. From the
webAppOS point of view, a remote processor is just like an ordinary processor, which is
accessed by a different adapter (adapter for remote web processors). However, there is an
issue on how to share web memory between MRAM located on one node and a remote
web processor located on a remote node. There are 3 possible approaches:

• Continue using memory-mapped files. However, they have to be located on a shared
network drive. That requires support from the AR repository, so its access bits must
take into consideration network delay since memory fragments mapped to files on a
network file system are not being synchronized instantly.

• Synchronize web memory in the same way as between the server and the client,
i.e., using Web Socket Bus. While we do not need memory access bits, we face
another dilemma: we either need to synchronize web memory with a remote proces-
sor continuously (thus, wasting network traffic and remote server resources), or to
synchronize the whole web memory each time a remote processor is invoked (thus,
every call to a remote web processor would become inefficient).

• Use another inter-process communication mechanism (such as Java Remote Method
Invocation, RMI) to forward RAAPI calls from a remote web processor to MRAM.

Each of these approaches can be used when implementing remote web processors.

5.5. Web Processor Bus Service

To be able to use server-side or remote web processors, the server-side bridge initializes
Web Processor/Web Memory Bus as follows. First, the bridge starts an internal service
called Web Processor Bus Service. This service ensures that web processors can com-
municate with the bridge. The communication channel is called Web Processor Bus [7].
Then, the bridge launches (or connects to) web processors mentioned in the webAppOS
etc/webproctab file [22]. Each web processor is launched via the corresponding web pro-
cessor adapter [38]. When initialized (or when it becomes available), the web processor
communicates back to Web Processor Bus Service and registers itself there (by calling the
registerWebProcessor function) [8].

6. Web I/O Devices

The server-side and the client-side code can access virtually any device. For instance,
the server-side code can access some database or the file system, while the client-side code
can manipulate the HTML document (DOM) and handle UI events. Web I/O devices

6.1 Scopes 18

implemented via third-party services can also be accessed from code. Thus, a web I/O
device can be accessed by making web calls to code that is able to send signals to this
device. If a web I/O device itself is a signal source (e.g., it acts as event source such as for
user input event within the browser window), a TDA Event object can be created within
web memory, and a corresponding TDA event listener will be called by means of a web
call.

However, the following two points are required for each web I/O device:

1. The user has to be authenticated to access the device (e.g., a token must be obtained
to access a remote cloud drive or users’ files stored at webAppOS server).

2. Some device API must be available.

Section 6.1 describes a universal way used by webAppOS to authenticate access to web
I/O devices. Section 6.2 lists several predefined webAppOS web I/O devices and their
APIs. Section 6.3 shows how third-party file systems and databases can be mounted
within the predefined webAppOS web I/O devices.

6.1. Scopes

To be able to access webAppOS predefined web I/O devices as well as ex-
ternal web I/O devices (such as cloud services), authentication is required. We
use the term scope to denote a resource (or a set of resources) that can be ac-
cessed only by authenticated users. Each scope has a name (or identifier), which
is defined by the scopes provider (such as webAppOS or Google) that hosts the
resources represented by a scope. For instance, Google defines multiple scopes
such as ”profile” (https://www.googleapis.com/auth/userinfo.profile) and ”spreadsheets”
(https://www.googleapis.com/auth/spreadsheets)21.

To be able to access resources within the given scope, authentication is required. For
instance, Google’s scopes can be accessed after entering the Google account password
and by allowing the given web application (such as webAppOS itself or one of its web
applications) to access the required scopes (Google login page will inform the user about
the requested scopes). Since authorizing scopes requires user’s intervention at the client-
side, webAppOS API for accessing scopes are also client-side. If some server-side code
needs access to some scope, it can make a web call to some client-side code that will
authenticate the desired scope.

6.1.1. Scopes API

webAppOS API for accessing scopes is implemented in webappos.js. The two main
functions are webappos.request scopes and webappos.sign out [9].

The webappos.request scopes function authenticates the user to use one or more par-
ticular scopes of the given provider. webAppOS will use the underlying scopes driver
tailored for the given scopes provider [10]. The driver usually displays a login win-
dow, obtains access tokens, and stores them somewhere in the browser memory (e.g.,
JavaScript variable, localStorage, or cookies) and/or in webAppOS Registry under the
”xusers/<login>/<driver name>” registry branch. Tokens stored in Registry must be
persistent offline tokens so that they can be re-used later after the user closes the browser
window.

21see https://developers.google.com/identity/protocols/googlescopes for the full list of scopes

6.2 Predefined Web I/O Devices 19

The webappos.sign out function revokes all client-side access tokens from the browser
memory. This function, however, does not revoke persistent offline tokens stored in Reg-
istry. Those tokens must be revoked separately when the user would desire to revoke
them; webAppOS will consult the ”xusers/<login>/<driver name>” Registry branch to
revoke the tokens correctly.

6.1.2. webAppOS Scopes Driver

webAppOS itself follows the scopes conventions: it registers the webappos scopes
driver and provides the following webAppOS scopes:

• “login” - allows authenticated users to access particular predefined web I/O devices
(their home filesystems and the corresponding “users” registry branches); allows the
users to make private web calls;

• “project id” - includes the “login” scope, but also ensures a connection with an
MRAM slot for the desired project (project id has to be either specified in the
URL, or selected via the file browse dialog).

Client-side JavaScript example:

webappos . r e q u e s t s c o p e s (” webappos scopes ” , ” p r o j e c t i d ”) ;

6.2. Predefined Web I/O Devices

6.2.1. webAppOS Registry

webAppOS Registry is a hierarchical database for storing settings related to users,
projects, and applications. Like Windows Registry, webAppOS Registry has the following
predefined root keys:

• xusers - stores restricted information about webAppOS users, such as user’s verified
e-mail. Data in the xusers key are intended to be accessed only by webAppOS itself;
the xusers key is not made accessible for end-users or client-side scripts. Thus, for
example, the user cannot change the e-mail without verification by webAppOS.

• users - stores information about webAppOS users, where users have full access to
their data after they have been authenticated. The users key stores authentication
tokens and hashed passwords. The users can change their authentication informa-
tion (e.g., change a password or add/remove access tokens).

• projects -stores information about webAppOS projects. Data in the projects key
are intended to be accessed only by webAppOS itself. Since webAppOS projects
are usually zipped, some temporary directories are needed to extract them. The
projects key stores the mapping between zipped and extracted projects.

• apps - stores information about webAppOS web applications and web services.
Data in the apps key have read-only permissions when accessed from the client-
side. However, installed (and, thus, verified) applications and services running at
the server side have read-write access (usually, they write to the branch associated
with the app itself; however, they can also access other branches, e.g., to change the
configuration of another app).

6.2 Predefined Web I/O Devices 20

Each setting in webAppOS Registry can be accessed by a path string, e.g.,
“xusers/[login]/email”. A path string can reference a final primitive value or a subkey. In
the latter case, the value is a JSON object.

Certain webAppOS functionality relies on webAppOS Registry:

• webAppOS login service uses the xusers and users keys for authenticating existing
users and registering new ones (their e-mails are also validated by the service) [11].

• webAppOS MRAM uses the projects key to associate MRAM slots with temporary
project directories.

• webAppOS server uses the apps key to store information about how web services
have to be launched (automatically or not).

• webAppOS applications and services can authenticate users for accessing remote web
services; user credentials (e.g., access tokens) and other technical information can
also be stored in webAppOS Registry, under the user key. For instance, webAppOS
Home File System searches in Registry for mount points used to access remote
storage.

API. webAppOS Registry is accessible via server-side API (accessible via Java ob-
ject org.webappos.server.API.registry) [12]. There are also 2 web calls actions —
webappos.getUserRegistryValue and webappos.setUserRegistryValue — which can be
used from server-side and client-side code.

Each user can mount remote registries as subkeys under the corresponding
users/<login> webAppOS Registry branch. Information about registry mount points is
also stored in webAppOS Registry under users/<login>/registry mount points. Registry
API takes care of handling requests to the mounted registry subkeys via the corresponding
registry drivers [13].

Scalability. By default, webAppOS Registry is configured to use lightweight JSON files.
However, webAppOS Registry can be configured to use the CouchDB no-SQL database.
In the latter case, webAppOS Registry can be easily scaled and shared between multiple
webAppOS instances (servers), since CouchDB has a built-in replication feature.

6.2.2. webAppOS Home File System

webAppOS Home File System corresponds to the webappos/home directory, where
each subdirectory corresponds to a home directory of some webAppOS user.

Certain webAppOS services rely on webAppOS Home File System:

• File Browser service - a lightweight HTTP-based API for accessing user’s home file
system; used by the File Browser application and webappos.desktop.browse for file
function from webappos.js.

• webDAV service - webAppOS service implementing webDAV protocol.

API. webAppOS Home File System is accessible via server-side API (accessible via Java
object org.webappos.server.API.homeFSRoot) [14]. There are also several file system-
related web calls actions [6].

Each user can mount remote file systems as virtual subdirectories of their home direc-
tories. Information about such mount points and users’ credentials is stored in webAppOS
Registry under users/<login>/fs mount points [15]. Home File System API takes care of
handling requests to the mounted subdirectories via the corresponding remote file system
drivers.

6.3 Mounting Remote File Systems and Registries 21

Scalability. The webappos/home directory can be shared (or replicated) between multiple
webAppOS instances using traditional directory sharing technologies such as Samba or
NFS.

6.2.3. E-mail Sender

E-mail Sender is a web I/O device, which is able to send e-mails.

webAppOS login service relies on E-mail sender, when registering new users (to vali-
date their e-mails) and when changing users’ passwords.

API. E-mail Sender is accessible via server-side API (accessible via Java object
org.webappos.server.API.emailSender) [16].

Scalability. Since the e-mail server is specified by its URL and credentials, the same
settings can be used in all running webAppOS instances. We assume that mail server
load balancing can be configured in the mail server itself.

6.2.4. Desktop

The desktop can be considered a client-side web I/O device implementing a desktop
environment with an application launcher, window manager, etc. Particular web ap-
plications are running in iframes corresponding to desktop windows. The desktop uses
cross-frame messages to ensure the communication between a web application and the
desktop. In its simple variant, the desktop can be just a simple tab with the “Sign out”
button and the ability to show the list of all installed web applications (as it is done in
Microsoft Office Online, iCloud, and Google Docs).

API. While there can be different implementations of the desktop application, they
must implement the same Desktop API, which is accessible to webAppOS applications
via the webappos.desktop object from webappos.js. For instance, there are functions
webappos.desktop.launch app and webappos.desktop.browse for file [9].

Scalability. Since Desktop is a client-side web I/O device, each user has their own desktop
running on their own browser; thus, there is no need to support Desktop scalability from
webAppOS servers.

6.3. Mounting Remote File Systems and Registries

6.3.1. Remote (Cloud) File System Drivers

Scopes drivers can provide access to remote file systems (e.g., cloud drives such as
OneDrive or iCloud drive). For that, the scopes driver has to provide one of or both
the server-side and browser-side implementation of the File System API (the browser-side
API must be implemented only when the driver is intended for serverless mode) [14]. A
File System API implementation is called a file system driver [15].

Each file system driver is associated with some URI prefix, e.g., “gdrive:”. To mount a
remote file system, a registry key “users/<login>/fs mount points/<mount-point-path>”
must be created; the value of this key is a remote location preceded by the correspond-
ing prefix, e.g., “gdrive:https://drive.google.com/open?id=1234”. webAppOS Home File
System module takes into consideration all mount points from Registry: when a user
refers to a mount point, webAppOS forwards the request to the underlying driver.

22

6.3.2. Remote (Cloud) Registry Drivers

Scopes drivers can provide access to hierarchical remote databases that can simulate
Registry behavior. The scopes driver has to provide one of or both the server-side and
browser-side implementation of the Registry API. Such implementations are called registry
drivers [13].

Each registry driver is associated with some URI prefix, e.g., “gspreadsheet:”. To
mount a remote registry, a registry key “users/<login>/registry mount points/<user-
registry-subkey>” must be created; the value of this key is a remote location preceded by
the corresponding prefix. webAppOS Registry takes into consideration all such Registry
keys and will be able to call the corresponding registry driver when the user accesses the
mounted registry subkey.

7. webAppOS Applications and Services

From the end user’s as well as from the developer’s point of view, webAppOS is an
infrastructure for running web-based applications and services. webAppOS registers the
following URL paths and subdomains (in case the domain is specified) for them22:

• <domain-or-ip>/apps/<short-app-name> and <short-app-name>.<domain> for
webAppOS applications;

• <domain-or-ip>/services/<short-service-name> and <short-service-
name> service.<domain> for webAppOS services.

The main difference between applications and services is as follows:

• applications are delivered as visible HTML pages (which can rely on other technolo-
gies such as client-side CSS/JavaScript/WebAssembly or server-side PHP);

• services provide some web-based API (HTTP REST/AJAX or non-HTTP), which
is invisible to end users but can be used by developers or administrators.

webAppOS applications can rely on webAppOS services. For example, the webAppOS
login application requires the login service.

7.1. webAppOS Web Applications

A webAppOS application can be considered as a set of web calls actions. Some of these
actions are implemented at the server-side using server-side technologies, server-side web
calls adapters, and org.webappos.server.API, while others rely on client-side technologies,
client-side web calls adapters and webappos.js.

Depending on how web application HTMLs are delivered, different app adapters can
be used. The main adapter is “html” - it just servers the web-root directory of the given
app (and merges it with the global web root directory webappos/web-root). Other adapters
such as server-side PHP interpreter or WAR loader can be implemented in the future.

Web applications that require web memory just request the webAppOS “project id”
scope, and webAppOS will ensure the connection to the corresponding MRAM slot. Other
applications can suffice without web memory (such as the login application, which is not
even able to connect to MRAM, since the user has not been authenticated yet). Still,
such applications can rely on public static web calls and certain web services.

22There can be slight variations in the sub-domain in case the domain is not specified, and the corre-
sponding application or service requires a root path.

7.2 webAppOS Engines 23

7.2. webAppOS Engines

Engines resemble shared libraries: their code is shared between different web ap-
plications, while data are project-specific and stored within the project web memory.
Engines usually implement graphical presentations, e.g., dialog windows or graph dia-
grams. Engines can provide different implementations depending on how webAppOS will
be launched - as a web application, a desktop application, or a mobile application. How-
ever, if multiple implementations are provided, each implementation should support the
same set of web calls actions. That would allow the code using the engine to be executed
on different platforms without modifications.

webAppOS engines resemble TDA graphical presentation engines23 with the following
distinction: in TDA, engines must be implemented using just one adapter (e.g., staticjava),
while in webAppOS, parts of the same engine can be implemented using different adapters.
Thus, it is possible to define an engine, where some commands are implemented at the
server-side in Java or Python, while other commands are implemented at the client-side
in JavaScript or WebAssembly.

Each engine must provide an interface metamodel, which will be automatically loaded
into web memory. Before calling an engine, the application fills the model repository with
data according to the metamodel of that engine and submits a command object (links
it to the TDAKernel::Submitter object). Then webAppOS will search for the web call
action with the name equal to the name of the command class, and execute it. Engines,
in their turn, can emit events, which must be stored in web memory and also linked to
the submitter object. On each event, webAppOS finds the corresponding event listeners
and calls them.

7.3. webAppOS services

webAppOS services are traditional web services tailored to be installed and
executed within the webAppOS environment. There can be different service
adapters. The default is “javaservlet”, which looks for the given Java class extending
javax.servlet.http.HttpServlet. Other adapters such as PHP adapter, or an adapter being
able to launch a preconfigured virtual machine (or a container) and forward webAppOS
ports there, can be implemented in the future.

The following services come out-of-the-box with webAppOS:

• login.service - implements user registration and authentication [11]. The user is
identified by a password or a token validated at the server-side. OAuth 2.0 authen-
tication via third-party services (e.g., Google or Facebook) can be implemented in
the future.

• webdav.service and FileBrowser.service - services providing access to the file
system via the webDAV protocol and the Dojo REST conventions [17, 18]. The
latter service is used by the FileBrowser application. Since both services rely on
the File System API, all mounted remote directories are also accessible via these
services [14].

• webcalls.service - provides access to Web Caller for making web calls [19]. While
unauthenticated users can access only public static web calls, authenticated users
can also make private web calls such as get the list of their open projects or access

23Refer to http://tda.lumii.lv/tda/ for more details on TDA engines.

http://tda.lumii.lv/tda/

7.4 Serverfull and Serverless Modes 24

their users subkeys in Registry. If the project id is specified, the authenticated user
can also make non-static calls requiring access to web memory.

7.4. Serverfull and Serverless Modes

In serverfull mode (the default mode), both client-side and server-side parts of
webAppOS can be used by web applications. In particular, server-side code is able to
use webAppOS server-side API (org.webappos.server.API), while the client-side code uses
webappos.js [20, 9].

As a particular use case, webAppOS can be used to develop lightweight serverless
applications. “Serverless” is only from webAppOS point view since such applications do
not rely on any webAppOS server-side code. However, they can use third-party services
such as cloud storage.

Serverless webAppOS applications must meet the following criteria:

• require a simple server (for serving plain HTML/CSS/JavaScript files);

• do not rely on webAppOS server-side API (org.webappos.server.API), but can rely
on webappos.js, which re-implements certain server-side web calls at the client-side;

• do not use webappos scopes driver, but can use other scopes that do not require
webAppOS server (e.g., google scopes driver is able to access Google services without
the presence of webAppOS server; thus, this driver can be used in serverless mode).

Serverless services, in their turn, have to meet the following requirements:

• They have to be implemented in plain HTML/JavaScript. The desired implemen-
tation is to put index.html into some subdirectory within the web root directory
(e.g., services/my-service). This subdirectory will serve as a service request path.
The index.html file can support some URL query arguments. Thus, a request to
the service can look like:

<domain−or−ip>/ s e r v i c e s /my−s e r v i c e /? arg1=value1&arg2=value2

The same service can be also implemented in a serverfull variant. If the server-side
code (e.g., Java servlet) implements the same path and takes the same arguments,
then the service can be equally used from both serverless and serverfull modes.

• If the service connects to some third-party cloud service, some API key (or other
credentials) may be required by that third-party. In this case, these credentials have
to be accessible by client-side code. That can be implemented by storing them in
some JSON file located in the same directory as other files, or hard-coded scripts.
However, there is a risk that these credentials can be misused. In contrast, serverfull
services can store these credentials at the server-side, e.g., in the xusers Registry
branch, without direct access from the client.

8. Overall webAppOS Architecture

Figure 4 provides a summary of the webAppOS architecture.

8.1 Main Components 25

Web service 1
client-side code

Server-Side
Web Memory
(MRAM slots)

Web Socket
Bus

Client-side
web processor

Client-Side
Web Memory
(tda.model)

HTTP/AJAX
Bus

Server-side
web processors

P

P

C

C

Web service 2
server-side code

Web app 1
client-side code

Web app 2
client-side code

Engine 1
client-side code

Web app 1
client-side code

Web app 2
client-side code

Engine 1
client-side code

Web service 1
client-side code

web-root

Web app 1
server-side code

Web app 2
server-side code

Engine 1
server-side code

Web service 1
server-side code

Web Processor
Bus Service

Server-side
web I/O devices

Server-side code

Server-side bridge

A

A

S

S

FS

/apps/app1

/apps/app2

/service/service1

/service/service2

Web Caller

Synchronizers

C

C

Sc

Web Pro-cessor Bus

C

Web Server Gate

Client-side bridge

tda.websocket

webappos.webcall

<script>

R

FS

Sc

Sc

Sc R

Web Processor/
Web Memory Bus

Figure 4: Overall webAppOS architecture.

8.1. Main Components

The main components shown in Figure 4 are:

• server-side web memory containing MRAM slots for all connected users;

• client-side web memory for a particular user working with a particular project;
implemented in JavaScript objects accessible via tda.model ;

• the server-side bridge; it contains web memory synchronizers, Web Caller (for mak-
ing web calls from server-side code), and runs Web Processor Bus Service (for com-
municating with server-side web processors);

• the client-side bridge; it contains the tda.websocket object (a JavaScript Web-
Socket instance) for synchronizing web memory; it also provides the client-side
webappos.webcall function acting as an analog of server-side Web Caller;

• server-side and remote server-side web processors, which are accessed via web pro-
cessor adapters (“P”);

• the main client-side web processor (currently, there is only one client-side web
processor corresponding to the main JavaScript message loop; it does not need
an adapter, since the client-side bridge is able to use it directly); in the future,
webAppOS might be able to support multiple client-side web processors by means
of web workers or browser plugins;

8.2 Similarity with the Typical Motherboard Layout 26

• web calls adapters (“C”’) used by web processors as abstraction layers for different
instructions sets;

• server-side I/O devices (including Registry, webAppOS Home File System, and E-
mail Sender);

• client-side I/O devices (such as the desktop and printers);

• cloud services, which use scopes drivers for authentication (“Sc”); some scopes
drivers can provide remote registry drivers (“R”) and/or remote file system drivers
(“FS”) for mounting remote registry keys and remote file systems;

• Web Server Gate serving URLs for installed webAppOS applications and services;
end users connect to these URLs;

• webAppOS applications (using the code from webAppOS engines) and services;
applications and services are attached via various adapters (“A” and “S”) depending
on the underlying technology used in that application of service.

Besides main components, there are also several communication channels for transferring
data between them. While some channels are simple function calls (depicted as thin
arrows in Figure 4), others, which we call buses, require sending data between different
OS processes or between different network nodes (bold arrows). There are the following
main buses in webAppOS:

• Web Processor/Web Memory Bus is used to access MRAM slots from the server-side
bridge and server-side web processors; implemented via memory-mapped files; it is
hidden behind Web Processor Bus;

• Web Processor Bus is a communication channel between Web Processor Bus Service
and server-side web processors; implemented in Java RMI, but can rely also on other
technologies (e.g., when accessing remote web processors);

• Web Socket Bus - ensures web memory synchronization and transfers web calls,
when they have to be executed on the other node;

• HTTP/AJAX Bus - traditional way for delivering HTML pages and web services;
implemented in the underlying webserver software and in the web browser. In case
a webAppOS service implements a non-HTTP-based protocol, webAppOS will still
use the HTTP/AJAX bus for that service to display relevant information about
that service.

An interactive version of Figure 4 with links to the underlying API specifications online
is available at http://webappos.org/dev/idoc/.

8.2. Similarity with the Typical Motherboard Layout

If we re-arrange the discussed elements of the web computer architecture from Figure 1
and add bridges, we come up with Figure 5(a), where we can notice a similarity with the
typical motherboard layout (Figure 5(b)).

http://webappos.org/dev/idoc/

8.3 Developers’ Experience 27

Server-side bridge Server-side
web memory
(MRAM slots)

Web Socket
Bus

Client-side
web memory
(tda.model)

HTTP/AJAX
Bus

Client-side bridge

Server-side
web processors

Client-side
web processor

(a) (b)

Figure 5: (a) The overall webAppOS architecture. (b) A typical layout of the north and south bridges
(image by Gribeco and Moxfyre, CC BY-SA 3.0).

8.3. Developers’ Experience

From the developer’s point of view, webAppOS factors out almost all web-specific as-
pects; thus, developers can assume they are writing applications for a single PC, with
single memory and multiple processors in place. Network communication, user authenti-
cation, automatic acquisition of SSL certificates and their renewal, access to user’s home
directory at the remote file system (where files can be uploaded to), and other features,
are provided by webAppOS “for free”.

8.4. End-Users’ Experience

From the end user experience, webAppOS resembles Google Drive, Microsoft
OneDrive, and Apple’s iCloud with the corresponding web applications (text editors,
spreadsheets, etc.). There are two modes:

• the desktop mode, which provides classical desktop experience by displaying multi-
ple webAppOS applications in a single browser tab24;

• the full-screen mode, where each webAppOS app occupies a single tab. However, a
menu button is provided to launch other apps in new tabs.

8.5. Administrators’ Experience and Scaling

The architecture described in this document describes one webAppOS server. For
small loads, a single server can be installed by unpacking the binary zip (or by building
and installing the webAppOS GitHub project using the gradle tool). The administrator

24The demo can be watched at https://youtu.be/Oycer61_SYw.

https://youtu.be/Oycer61_SYw

8.5 Administrators’ Experience and Scaling 28

has to configure the webappos.properties file by specifying the server domain name (or
IP), ports, e-mail server address and credentials, optional CAPTCHA server settings, etc.
The desired webAppOS apps and services can be installed just by copying them into the
webappos/apps directory (some of them may require additional configuration). Then, after
launched, webAppOS will serve the installed apps and services. If the “secure” setting is
enabled in webappos.properties, webAppOS will automatically obtain and renew HTTPS
certificates via the ACME protocol.

For scaling, some cloud load balancing service (such as Amazon Fargate) can be uti-
lized to manage multiple webAppOS servers. During load balancing, all connections to
the same webAppOS project must be forwarded to the same server, since MRAM slots
allocated within one webAppOS server are not shared with other webAppOS servers.
Each webAppOS instance usually has its own set of web processors (however, they can
share remote web processors). Web I/O devices must support scaling (in Section 6, we
have discussed scaling of predefined web I/O devices included in the standard webAppOS
distribution).

—————–

References

Cited API Specifications (Deliverable 2.2)

[1] “Client-side web memory API,” http://webappos.org/dev/idoc/?=cswmapi.

[2] “Web processor/web memory bus,” http://webappos.org/dev/idoc/?=wpwmb.

[3] “Web socket bus,” http://webappos.org/dev/idoc/?=wsb.

[4] “Server-side web calls adapters,” http://webappos.org/dev/idoc/?=sswca.

[5] “Client-side web calls adapters,” http://webappos.org/dev/idoc/?=cswca.

[6] “webappos.* web calls actions,” http://webappos.org/dev/idoc/?=wwca.

[7] “Web processor bus,” http://webappos.org/dev/idoc/?=wpb.

[8] “Web processor bus service,” http://webappos.org/dev/idoc/?=wpbs.

[9] “webappos.js API,” http://webappos.org/dev/idoc/?=wjsapi.

[10] “Scopes drivers,” http://webappos.org/dev/idoc/?=sd.

[11] “webAppOS ”login” service,” http://webappos.org/dev/idoc/?=wls.

[12] “Registry API,” http://webappos.org/dev/idoc/?=rapi.

[13] “Registry drivers,” http://webappos.org/dev/idoc/?=rd.

[14] “File system API,” http://webappos.org/dev/idoc/?=fsapi.

[15] “File system drivers,” http://webappos.org/dev/idoc/?=fsd.

[16] “E-mail sender API,” http://webappos.org/dev/idoc/?=esapi.

http://webappos.org/dev/idoc/?=cswmapi
http://webappos.org/dev/idoc/?=wpwmb
http://webappos.org/dev/idoc/?=wsb
http://webappos.org/dev/idoc/?=sswca
http://webappos.org/dev/idoc/?=cswca
http://webappos.org/dev/idoc/?=wwca
http://webappos.org/dev/idoc/?=wpb
http://webappos.org/dev/idoc/?=wpbs
http://webappos.org/dev/idoc/?=wjsapi
http://webappos.org/dev/idoc/?=sd
http://webappos.org/dev/idoc/?=wls
http://webappos.org/dev/idoc/?=rapi
http://webappos.org/dev/idoc/?=rd
http://webappos.org/dev/idoc/?=fsapi
http://webappos.org/dev/idoc/?=fsd
http://webappos.org/dev/idoc/?=esapi

8.5 Administrators’ Experience and Scaling 29

[17] “webDAV service,” http://webappos.org/dev/idoc/?=wds.

[18] “FileBrowser service,” http://webappos.org/dev/idoc/?=fbs.

[19] “Web calls service,” http://webappos.org/dev/idoc/?=wcs.

[20] “webAppOS server-side API,” http://webappos.org/dev/idoc/?=wssapi.

Cited webAppOS Documentation (Deliverable 3.2)

[21] “.webcalls file format,” http://webappos.org/dev/idoc/?=wcff.

[22] “webproctab file format,” http://webappos.org/dev/idoc/?=wptff.

Other References

[23] J. von Neumann, “First draft of a report on the EDVAC,” Moore School of Electrical
Engineering, University of Pennsylvania, 1945.

[24] V. Bush, “As we may think,” SIGPC Note., vol. 1, no. 4, pp. 36–44, Apr. 1979.

[25] Ecma International, “ECMA-262 6th edition, the ECMAScript 2015 language spec-
ification,” 2015.

[26] A. Chiesa, E. Tromer, and M. Virza, “Cluster computing in zero knowledge,” in
Advances in Cryptology - EUROCRYPT 2015, E. Oswald and M. Fischlin, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 371–403.

[27] Object Management Group, OMG Meta Object Facility (MOF) Core Specification
Version 2.4.1, Object Management Group Std. formal/2011-08-07, 2011.

[28] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An initial appraisal,” in
CoopIS, DOA 2002 Federated Conferences, Industrial track, 2002.

[29] J. Bézivin and I. Kurtev, “Model-based technology integration with the technical
space concept,” in Proceedings of the Metainformatics Symposium, 2005.

[30] S. Kozlovics, E. Rencis, S. Rikacovs, and K. Cerans, “A kernel-level UNDO/REDO
mechanism for the Transformation-Driven Architecture,” in Proceedings of the 2011
conference on Databases and Information Systems VI: Selected Papers from the Ninth
International Baltic Conference, DB&IS 2010, ser. Frontiers in Artificial Intelligence
and Applications, vol. 224. Amsterdam, The Netherlands: IOS Press, 2011, pp.
80–93.

[31] J. Barzdins, S. Kozlovics, and E. Rencis, “The Transformation-Driven Architecture,”
in Proceedings of DSM’08 Workshop of OOPSLA 2008, Nashville, Tennessee, USA,
2008, pp. 60–63.

[32] S. Kozlovics and J. Barzdins, “The Transformation-Driven Architecture for interac-
tive systems,” Automatic Control and Computer Sciences, vol. 47, no. 1/2013, pp.
28–37, 2013, Allerton Press, Inc.

[33] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling
Framework, 2nd Edition, E. Gamma, L. Nackman, and J. Wiegand, Eds. Addison-
Wesley, 2008.

http://webappos.org/dev/idoc/?=wds
http://webappos.org/dev/idoc/?=fbs
http://webappos.org/dev/idoc/?=wcs
http://webappos.org/dev/idoc/?=wssapi
http://webappos.org/dev/idoc/?=wcff
http://webappos.org/dev/idoc/?=wptff

8.5 Administrators’ Experience and Scaling 30

[34] S. Kozlovics, “The orchestra of multiple model repositories,” in SOFSEM 2013: The-
ory and Practice of Computer Science, ser. Lecture Notes in Computer Science, vol.
7741. Springer Berlin Heidelberg, 2013, pp. 503–514.

[35] R. Liepiņš, “Library for model querying: IQuery,” in Proceedings of the 12th Work-
shop on OCL and Textual Modelling, ser. OCL ’12. New York, NY, USA: ACM,
2012, pp. 31–36.

[36] S. Kozlovičs, “Efficient model repository for web applications,” in Proceedings of the
13th International Baltic Conference on Databases and Information Systems (Baltic
DB&IS 2018), ser. CCIS, vol. 838. Springer Nature Switzerland, 2018.

[37] ——, “Fast model repository as memory for web applications,” in Databases and
Information Systems X, 2019, vol. 315, pp. 176–191.

[38] “Server-side web processor adapters,” http://webappos.org/dev/idoc/?=sswpa.

http://webappos.org/dev/idoc/?=sswpa

	Introduction
	The Web Computer Architecture
	Web Memory: Storing and Accessing Data
	The Main Design Choice
	Accessing Data in Web Memory
	Accessing Web Memory at the Server Side.
	Accessing Web Memory at the Client Side.

	Multiple Web Memory Instances on a Single Server
	Collaboration
	Implementing Web Memory
	Code References

	Web Calls: Launching Code
	Instruction Sets
	Web Calls
	Web Calls Adapters

	Web Processors
	The Client-Side and Server-Side Bridges
	Implementing Client-Side Web Processors
	Implementing Server-Side Web Processors
	Implementing Remote Web Processors
	Web Processor Bus Service

	Web I/O Devices
	Scopes
	Scopes API
	webAppOS Scopes Driver

	Predefined Web I/O Devices
	webAppOS Registry
	webAppOS Home File System
	E-mail Sender
	Desktop

	Mounting Remote File Systems and Registries
	Remote (Cloud) File System Drivers
	Remote (Cloud) Registry Drivers

	webAppOS Applications and Services
	webAppOS Web Applications
	webAppOS Engines
	webAppOS services
	Serverfull and Serverless Modes

	Overall webAppOS Architecture
	Main Components
	Similarity with the Typical Motherboard Layout
	Developers' Experience
	End-Users' Experience
	Administrators' Experience and Scaling

	References

